There are a bunch of books about the TEX typesetting language, but
none of those books deal with aspects about the real purpose of TgX. The
issue is typesetting, and this is much more important than any syntactical
or semantical featurers that a language like TgX offers. Typesetting —
apparent from the existence of the word — must be something different to
word-processing and simple document printing. Typesetting is more than
lining up characters in a row, either in proportional or in nonproportional
fonts. Typesetting involves more than selecting fonts for flashy appearance.
Typesetting is an art.

I'd like to drop the introductory subject entirely and dive directly into the

question: How to use this bewildering kind of a typesetting language called
TEX.

Font s

Let’s talk about fonts first. Fonts in general are divided in three different
classes.

sans serif serif fancy
also called
grotesque antiqua bastard

There are two very simple rules about fonts. Never mix fonts from different
classes! Use fewer fonts! The font classes again are divided into subclasses.
normal
slanted
italic
condensed
light
bold

These subclasses are often used in arbitrary combinations (e.g. bold-
condensed-slant). There are undocumented punch lines of wisdom about
the combination of fonts from a single class. I recommend not to use slanted
fonts for titles or headlines. In normal text highlighting is better done with
slant than with bold.

Then there is the question of font selection. Which font, where? Here are
some rules of thumb.

2]

Long text for poetry or paperback-books should be written in serif fonts.
Documents with lines longer than 60 characters ought to be typeset in serif
fonts to avoid tiresome reading. Lines should always be as short as possible;
this is the reason for multiple columns in newspapers. Reading is much
easier the shorter the lines.

Short lines and short pieces of text may be typeset in sans serif fonts.
Sans serif fonts are usually hard to read. Therefore they are usually sized
larger, but this will be discussed when we turn to the issue of typesetting
measurements.

Here are some typical fonts for typesetting:

serif sans serif fancy
Garamond Helvetica computer modern fibonaccy funny
Palatino Optima Corinna
Times-Roman Univers Baskerville

computer modern roman

This is — in a few words — the way to select fonts, acquiring taste for good
fonts takes a lot of practice. It’s like composing music. But it is good advice
to keep in mind the basic rules that grew with the art of typesetting during
the centuries.

Here again the rules:
1.) Don’t use many fonts
2.) the longer the document, the fewer fonts

3.) Documents with long lines need serif fonts
Serif fonts are easy to read.

4.) Slant is better than bold highlighting.

5.) Headlines not in slant

6.) Never slant capitals

7.) When normal text is serif, Headlines ought to be serif, too.

How to select fonts in TEX? TEX is a programming language like any other.
Any programming language has data types, like real, integer, double, char
and so on. The same is true with TgX. TgX data types refer to typesetting
elements. Here are some:

f ont
box
t okens
nunber s
di mrensi ons
fil es

This is the essence and will be subject for the next pages: How to use the
different data types. The issue now is fonts. For those who are familiar with
programming languages will easily understand no problem to understand
the way fonts are used in TEX. A symbolic name is introduced (for your
specific document), to replace the real font. Here an example:

\ font\a=Gar anond at 10pt

This enables the font Garamond, which again may be referred to as \ a.
This leads to a substantial discussion about commands in TgX.

TeX conmands

As any computer language TEX has keywords and a specific syntax and
semantics how to use them. The problem with TgX is that keywords and
normal text have to be seperated during the typesetting process as fast as
possible. Therefore each keyword simply commences with a specific escape
character, which may be any character in the pattern of your choice. For
ease of use (and in order to avoid deep discussions) we adopt the character,
that the inventor of TgX, Donald E.Knuth chose when he designed TgX. This
character is \. So any sequence of characters preceded by \is considered to be
a TgX keyword. This does not yet explain how TgX figures out when the end
of a keyword is found. There is an easy rule. All characters ranging from
A-Z and a-z are considered elements of a keyword, all other characters,
special symbols and numbers are used as keyword delimiters. This may
easily be changed, but leads to an academic discussion about characters and
semantics. Refer to chapter 8 "The characters you type" in the TgXbook.

Now we know \font selects a font if the keyword \font is followed
be a symbolic name, here \ a and = and finally the name for the real font
here Garamond’ and additional keywords follows to set the size of the font,
here 10pt. Eventually the symbolic font name represents a TgXkeyword,
which may easily be detetected in the TgX-parser due to the preceeding

\escape character. The specific kind of the macro isdetermined by the font-
declaration statement. The keyword \ a refers to something wich turns out
to be a font and more specific the font Garamont.

TeX knows a few ways to select fontsizes.

\ font\a=Gar anond at 10pt
\ font\ b=cnr 10 scal ed\ magst ep2
\font\c=cnr10 scal ed 1432

The first way is the professional way to pick a font. It selects the font
Garamond in 10pt. But fonts are not necessarily selected this easy. On
standard printers fonts like Garamond are not available at all. Even though
you may easily find Times-Roman font on common laser-printers, you may
not randomly size this kind of font to any desired size. The same is true
for all the fonts coming with TgX. Those fonts come in discrete sizes in
sort of quantum leaps and are down-loadable pixelfonts. Pixelfonts have
to be generated for specific resolutions depending on the quality of your
output device. Therefore there is no chance to manipulate their size them
dynamically, instead there are files containing the pixel informations for
all different kinds of magnifications. TgX Versions come with all computer
modern fonts in the typical resolution of 300pt. They are stored in the
so-called generic font format, a format produced by Metafont, the sister-
program of TgX, that can produce fonts in any imaginable shape. This
format allows compact storage of pixel fonts. Actually generic font files use
significantly less space than the equivalent pixel files. The printer-driver
will automatically produce the according download format for pixel-fonts
for your device, so nobody has to care about this.

If you look at these kinds of fonts, the so called "computer modern font
family", you’ll notice that they come in different directories. These directories
contain the different pixel files in different steps of magnification, e.g. m300
contains all fonts in 300 dots per inch resolution in the standard design size,
that is magnification 0. Plain TgX provides some predefined macros to pick
fonts in different sizes. For esthetical reasons magnification is done with
a factor of 1.2. That is a font like cmr10, which originally was designed
for 10pt is called cmr10.300gf, the same font now comes scaled 1.2 times
bigger than the initial font, these are contained in the directory m360.
The next directory is m432, which contains fonts 1.2 larger than the m360
fonts, and this is continued until m1290. We therefore obtain 10 different
directories containing fonts in the resolution of 300 dots per inch in 10
different magnifications.

And here is a little table for the easy selection of font sizes in TgX:

magstep scaled pt gf

0 1000 10 300

half 1100 11 330
1 1200 12 360
2 1440 14.4 432
3 1728 17.3 518
4 2073 20.1 622
5 2488 249 746
- 2986 30 896
- 3583 35.8 1075
- 4300 43 1290

TEX supplies magsteps up to 5,this is why the table ends abruptly in the
column magstep. There are apparently three ways to pick a font. Here some
examples:

\font\a=cnr10 at 17. 3pt

\font\a=cnr 10 scal ed 1734
\font\a=cnr 10 scal ed 1728
\font\a=cnr 10 scal ed1728

All pick the same fontsize, even the scaled 1734 will give you the font
cmrl0 scaled 1728, because fonts come in discrete sizes and the driver will
pick the closest solution, but the spacing will not fit correctly, because TEX
itself calculates the typesetting with an imaginary font 1734. This may be
used to stretch characters apart like (s t r e t ¢ h). The table also contains
point sizes, which are applicable just for fonts designed for 10pt, like cmr10,
cmss10 or the like. For fonts like cmr6 or cmsy8 this list can not be valid
because those fonts obviously are designed for different basic sizes, here 6
and 8pt.

Si zes and neasur enent s

In typesetting an awful lot of sizes and units have to be expressed in highest
accuracy up to 1/1000 of an inch. Accuracy is the name of the game, when
it comes to real typesetting. A ,real” typesetter will not be convinced by a

6]

neat screen display, by an approximate ,looks quite nice” job. The real test
for a typesetting solution is how it comes on paper, and nothing but the
exact values will be accepted by the pro.

TeX knows a bunch of different kinds of measurement units. There are:

pt pica points
pc pica

in inch

bp bigpoint

cm centimeter
mm millimeter
dd didot points
cc cicero

sp scaled points

What are all these measurement units for? pt is used to determine small
sizes for fonts. All fonts are measured in pt, like in our example above
tt\font\a=Times-Roman at 10pt

10pt is a very common size for standard book-printing. Even smaller
fonts are used for special editions. The paperback edition of ,War and
Peace” for instance, occasionally has something like 8pt sized letters and
even things like 8.4pt are found. This book for example uses 10pt. Fonts
bigger than that are usually used for headlines, and book-headers and
titles. Professional typesetters usually don’t like big fonts. Using big fonts
indeed is not the job of a typesetter, rather the job of a layouter. People
who do commercials and advertising deal with bigger fonts and combine
single characters, which again is an art of its own. So let’s talk about classic
documents with small characters. Readable books are composed of 8pt to
10pt characters. Footnotes go down to 7pt and 6pt depending on the size
of the fonts in the rest of the document. Shifted numbers (sunscripts &
superscripts) are as small as 3pt to 4pt.

The bottomline of this discussion about the unit pt is: pt is used to
determine the size of fonts. But what is the size of a font? This question
is of basic importance for the use of a typesetting system. A font consists
of different characters. A g definitely has a different size than the capital
A of the same font. But we still talk about a font of lets say size 10pt. The
explanation can easily be derived from the following diagram:

2/3
baseline
1/3

Each character sits in an imaginary box, which is 10pt high. 2/3 of the box
is the character height and 1/3 is the character depth and each character has
its own individual width. Back to our example. The A and bold g would
look like this:

The widths of those characters are definitely different, but they both sit
in a box, that is 10pt high. For sure you already noticed, that this is a
simplification and abstraction. In reality each character has it's own width
and depth. The depth of a capital A is zero and the height of the g is smaller
than that of the A. But in general this abstraction helps a lot, it tells you
that the deepest character of size 10pt is 1/3 by 10pt deep and the tallest
character of size 10pt is 2/3 by 10pt high. This is a very important clue for
the future discussion.

Let’s continue with the next measurement units. For non-typesetters units
like pica and cicero are probably items from outer space and in fact we
can divide the units TEX can handle into two parts. The first part contains
measurement units, which are historical to the art of typesetting (point, pica,
didot point and cicero). The other part (inch, centimeter and millimeter)
are the units we are supposed to be familiar with. Doing real typesetting
means getting acquainted with real typesetting measurement units. We were
already talking about fonts. When we chose a font of size 10pt it would
mean to choose a font of 0.13837 inch. This apparently is less convenient to
get along with, than 10pt. No wonder, that typesetters chose their own way
to express the sizes they had to deal with in different units, due to the small
dimensions. Therefore it is a good idea to remain in the world of typesetting
units when a useful result is expected for the according document.

Almost everything can and sometimes has to be given in exact sizes for
any document. Lets just list all interesting parameters for dimensioning your
output, that are available in TgX:

hsi ze maxdept h

vsi ze t opski p
basel i neskip splitmaxdepth
pari ndent boxmaxdept h
hangi ndent hof f set

par shape vof f set

Apparently TgX provides all imaginable dimensions for complete control
over your document.

Very rarely you need all of them, but there are important ones you really
should keep in mind. Let’s consider a very simple document of just two
paragraphs and a very simple layout like this:

This layout really is as simple as can be, but still, it involves parameters
to get it done right the way we want it. First rule to approach a typesetting
system: never rely on default settings. You are the artist and you determine
the appearance of your document. Let’s look at our layout as a technical
drawing:

‘ parindent topsklp

baselineskip

parskip

||

hsize

|
|

A sum-total of 6 dimensions have to be specified to get this layout the
way we want it. Let’s take typical sizes:

\ pari ndent =1cc

\'t opski p=. 6666\ f ont si ze % 2/3 fontsize
\ par ski p=3dd

\ basel i neski p=11dd

\vsi ze=16cc

\ hsi ze=12cc

\ font\a=Ti nes- Roman at 10pt

This exactly is the parameter list you have to specify to get the desired
result. You may try this right away. When your TgX is installed, take an
arbitrary text containing pure ASCII text, put those parameters on top, \ bye
at the end and squeeze it through TgX. The result ought to be just, what
we’ve explained above. Take your favorite text-editor e.g. vi ftry.tex and
type the following in your file ftry. t ex (first try in tex)

\ f ont\ a=Ti mes- Ronan at 10pt
\ pari nent =1cc

\ 't opski p=. 6666pt

\ par ski p=3dd

\ basel i neski p=11dd

\'vsi ze=16¢cc

\ hsi ze=12cc

Save your file, exit your editor and type:
ptex ftry

TEX is started and produces a single page indicating this with a [1] on
your screen. Two new files will now exist. Ftry. | ogand ftry. dvi . The . | og
file contains all possible errors. There should be none, unless you made a
mistake in typing, or Text...... contains things like \ , & % Avoid
those characters for this first try. When you successfully filtered your file
ftry through TEX, you now may print it on your Post-Script laser-printer
with:

psdvi ftry |I p

And after a short while your page is supposed to appear on your laser-
printer. No doubt many things can go wrong, if so your TEX installation is
not correct please refer to your installation manual.

El

10

You now have supposedly produced your first TEXdocument. This should
encourage further steps to learn more about TgX.

| nportant paranetersfor typesetting

In our previous example we produced a page with a few paragraphs and
just one single font, nevertheless the result looks pretty neat. This is what
typesetting is all about, not a flashy appearance and a whole lot of fonts, but
readable and pleasing text output. To stress this point even further I'd like
to seduce to an additional, but most interesting experiment, with right the
same text we just used to produce our first sheet of paper with. As you most
likely noticed TgX produced justified output, and does hyphenation. How
come? Well TEX has it’s own hyphenation clockwork built in, to cut words
into pieces. Hyphenation is a problem of it’'s own and we’ll not bother with
it. Just keep in mind that TEX can do it and better than other programs
can. The important point is how TgX does the justification. The answer to
this question is of significant impact to the use of TgX and all typesetting
problems you will try to tackle with it. TEX does no simple line breaking by
merely adding the width of each character in words and trying to fit it into
a line with a specific length, instead it collects possible line breakpoints and
picks the optimal breakpoints in order to achieve an optimal visual result
of a paragraph under specific parameterized conditions. That sounds very
academic and theoretical. Therefore I'd rather like to attract your special
attention to the following examples:

Return to the keyboard and edit this ftry. t ex file and add the following
line just on top of. Text
\ spaceski p=2. 78pt pl us 4pt m nus . 8pt

Run your file through TEX and produce a new output. The result is different
and you probably notice, that it looks nicer, more professional. What we
added with this line is a new rule for interword spacing, called \ spaceski p
in TeX. The parameter states the rule used as standard interword spacing
2.78pt up to 6.78pt and as low as 2pt. The appearance of your document
changes stunningly by just changing this single parameter \ spaceski p. TgX
wouldn’t be TgX if there were no parameters to take into account that
are closely connected to a parameter like spaceskip. Indeed there is an
additional parameter called \ xspaceski p. This parameter gives the word

spacing after specific characters i.e. after .,!?, or the like. Rarely it is good
style to make a difference between those two cases — normally interword
spacing and spacing after punctuation are equal — but especially in the USA
you can meet this kind of bad habits. I recommend that whenever you
change spaceskip simply change \ xspaceski p to the same value. So in our
example the complete rule would need the additional statement:

\ xspaceski p=\ spaceski p

And now you should try to play with these values for spaceskip and
watch the different results. You will notice that, the less you allow a plus
and minus, the more often TEX will tell something about overfull and
underfull boxes. This will give you an idea of how sensitive these values
will react on different \ hsi ze. The narrower your document gets, the more
plus value has to be allowed to achieve justification. However the fixed
avarage value of \ spaceski p has to be chosen carefully, too, in order to get
a pleasing justification of your paragraph.

Those who already peered into the TgXbook might notice the similarity
of the introduction but probably will miss a discussion about \t ol er ance
and \ hbadness. This is on purpose, because the effect of those values is
significantly different to what we are talking about right now, but later on,
we are going to talk about those values as well.

It is important to play around with these values in order to develop a good
feeling for the right choice of those values. You probably noticed during
your experiments, that a single value of \ spaceskip i.e. something like
\ spaceski p=2. 73pt is valid as well. This value will result in a raggedright
output, however not in the way one would possibly like it, which is due to
an awful lot of over- and underfull boxes.

Now that you know how \spaceski p influences the behaviour of TgEX
line breaking algorithm, we might as well try to do a good ragged right
output. Even though this might appear as an absolutely trivial task, in the
eye of a professional typesetter it turns out to be one of the most difficult
task. So what is good ragged right in the eye of a pro?

Ragged right should avoid hyphenation. The interword spacing is fix, and
to be real correct the lines should be broken long, short, long As with
any problem a computer should solve, careful analysis of the given task is
more important, than a full featured programming language. To fulfill the
condition of alternating lines length is somewhat more difficult and will
be discussed later, but the other rules can instantaneously be fulfilled with
primitive means in TgX.

Avoid hyphenation. There is a specific parameter for hyphenation called

\t ol erance, which will be explained in detail a few pages later. \ t ol erance
has to be set to 10000 in order to avoid hyphenation. So much for now.
The fixed interword spacing is easily accomplished with a single value for
\ spaceski p. Finally we have to provide a real soft margin in order to
justify the fixed word spaces with a stretchable lineend. This is right the
way how TEX thinks about this problem, therefore there is nothing like a
right or left margin, but instead there is a \l eftskip and a \ri ghtskip,
respectively. Hence you may add the following lines to your text for ragged
right margins:

\ spaceski p = 2. 78pt

\ xspaceski p=\ spaceski p

\ pr et ol erance=10000

\ri ght ski p=0Opt pl us 3cc mi nus Opt

A rightskip of Opt plus 3cc means each individual line may be 3cc
shorter than \ hsi ze. If a negative value greater Opt is given, the lines may
consequently stick out \ hsi ze by the given amount.

You may certainly figure out how a centered text with ragged left and
right margins will be done.

Right we just mentioned the parameters \ | ef t ski p. When
\ I ef t ski p=0Opt pl us 3cc

is added to your file it ought to produce left and right centered single lines
of each paragraph, but actually it doesn’t. There is an additional parameter
that controls the behaviour of a paragraph: \ par fil | ski p.

\ par fil | ski p has a default value (mind the default values) in order to fill
the last line of each paragraph. This is not what we want in centered lines.
So we simply set:

\ par fil | ski p=0pt
\ par i ndent =0Opt

You may play with these parameters and remove your left and right skip
commands and notice interesting effects.

Let’s summarize the new parameters in a small diagram:

| parindent rightskip

hsize

We get good control over the appearance of a paragraph with these
parameters, but the appearance of a paragraph comes in a larger variation
than we can handle with these few parameters. Let’s take examples from
everyday life. Numbered paragraphs, paragraphs with big initial capitals,
shaped paragraphs. You may easily notice the interdependence, the mutual
influence between all mentioned parameters. But let’s introduce a few more
parameters to handle typical applications.

Consider a paragraph like the following:

This is something very common. Paragraphs preceded with dots, numbers,
or a.) b.) c.) or the like. Sometimes a complete word precedes a paragraph.
Let’s take a simple one, and the according TgX commands and discuss the
result later.

The first line of this paragraph starts with 1.) and a space. How can we
manage to have the following line indented exactly by the length of 1.) and
a space?. This leads to a very neat and fundamental feature of TgX.

Hori zont al boxes

We have already been talking about fonts and that each character of a font
is surrounded by an imaginary box. If it were possible to put those boxes
into a new box it should be possible to know the resulting size of the final
box, This is actually feasible with TEX and is a specific data type like \ f ont
is. This data type is called \ box. We can declare a symbolic name for a box.
ie. \indtxt by simply saying:
\ newbox\ i ndt xt
and now we can say
\ set box\i ndt xt =\ hbox{1.) }

The box \i ndt xt now contains 1.) and must have the resulting width of
all four characters. We can check this easily by saying:
\' showt he\ wd\ i ndt ext

and TgX will print the width of indtxt on the screen, saying something
like
> 14. 4467pt
This demonstates an important feature. TEX provides means to trace almost
any internal result of its own calculations. Accordingly you can easily find
out the height of \ box\i ndt xt and depth of this box by saying:

\ showt he\ ht\i ndt xt
\ showt he\ dp\ i ndt xt

The box has the height of the tallest character it contains and a depth of
the deepest character it contains. This gives the opportunity even to find the
depth height and width of any character combination and even of a single
character.

As an example:

\ set box\ i ndt xt =\ hbox{ g}
\ showt he\ wd\ i ndt xt
\ showt he\ ht\i ndt xt
\ showt he\ dp\ i ndt xt

"_n

will give the exact values of the surrounding box of the character "g". But
TEX not only can show you the values but also you may use those values
to assign parameters i.e.:
\ pari ndent =\ wd\ i ndt xt

This may even be used with parameters like spaceskip
\ spaceski p=\ wd0

And this is useful in the example lines from a few pages before.
\ spaceski p=2. 78pt pl us 3pt m nus . 78pt

may as well be stated as:

\ set box0=\ hbox{i}
\ spaceski p=\wd0 pl us 1. 3\ wdO mi nus . 3\ wd0

This is what the typesetter would actually say and do. The command
says: the spacing between words is the width of an “i” in the chosen font,
the space may stretch to 130% and shrink to 30%. This fits much more in
the pattern of thinking of a professional typesetter. And the result shows it.

As you will have noticed I did not declare a \ newbox but instead used
a number. This may always be done to suit the user’s laziness, yet it has
the disadvantage that you have to remember all the box numbers and you
cannot refer to boxes by symbolic names.

Back to our indentation problem. When we declare a box with:
\ set box\i ndbox=\ hbox{1.) }

we would know exactly how deep the second and consecutive lines have
to be indented — this is \ wd\ i ndt xt — as long as we can find a parameter
that allows us to indent the second and consecutive lines. There is such a
parameter, called \ hangi ndent . \ hangi ndent offers more than just a second
line and the rest of the lines of a paragraph to be indented. Together with
the parameter \ hangaf t er you may easily shape your paragraph in a great
variety of forms. A little diagram shows more:

—— hangindent ———

+ + -

hangafter

As long as the value of hangindent is positive the paragraph will be
indented at the left and, when it gets negative it will be indented at the
right. Whereas the value of hangafter says from which line indentation

16

should start (with a positive value) or at which line it should end, as soon
as it is negative.

Here some examples:

\ hangi ndent =2cc
\ hangafter=1

hangindent
|

\ hangi ndent =- 2cc
\ hangafter=1

hangindent

\ hangi ndent = 2cc
\ hangafter =-2

hangindent
|

\ hangi ndent =- 2cc
\ hangafter=-2

hangindent

These are all the possibilities. Let’s transfer this knowledge to our everyday
life problems of a paragraph that started with 1.)

\ pari ndent =0pt

\ newbox\ i ndt xt

\ set box\i ndt xt =\ hbox{1.) }

\ hangi ndent =\ wd\ i ndt ext

\ hangafter=1

\box\indtxt....... text

This may sound difficult, but in reality it isn’t. What’s that \ box\ i ndent
all about, why can’t we simply start our text in the following way:
1) e text

Very easy; the result would be something like this:

1.) The beginning of the first line would not be aligned with
the following lines. Why is that so? Interword spaces may
be stretched or shrunken and this is against our intention.

The beginning of the first line would not be aligned with the following
lines. Why is that so? Interword spaces may be stretched or shrunken and
this is against our intention. The first space between 1.) and the text has
to be fix and may not serve for any line justification. The space in the
\ box\ i ndt xt contains a space, which has right it's standard average value.
This is obvious, because hboxes extend exactly to their natural width, that
accumulates by adding the width of all characters the box contains, no
stretching or shrinking. This gives us an opportunity to get a closer look to
the property of boxes.

A box like:
\ hbox{ abcdef}

contains but the character “abcdef”. In order to construct a box with more
complex content, there must be some additional commands to handle this,
e.g. a box that contains this:
a. b.

Let’s Suppose we exactly know the distance between a. and b. we could
use the command \ hski p
\ hbox{a.\ hski plinb.}

supposing the distance between a. and b. is an inch. In typesetting we
usually encounter a different problem: a. and b. have to be placed in such
away, that they span over 1 inch. This can easily be done with:
\'hbox to lin{a.\hfill b.}

Sometimes more complicated solutions are needed, in particular boxes
when boxes overlap.

\ hbox{\ box\ A\ hski p- 8nm box\ b}
\ hbox t o2cm{\ box\ A\ hss\ box\ b}

Now we’ve learned a lot about horizontal boxes and it’s time to return to
practical applications.

First let’s summarize the keywords we’ve learned

\ hbox defines a horizontal box
\hfil | fills a box
\hss fills a box, if necessary overruns box borders

With this we can easily center single words in a line of length \ hsi ze
\hbox to \ hsize{\hfil| ... Text....\hfill}

This sounds easy, but what happens whenText gets longer
than\ hsi ze? TEX will utter something about an overfull box. There are
several interesting questions, that arise from this. When text spreads to
more than \ hsi ze, what could it have been, what our initial intention was.
There are a few possibilities, that represent what we might have liked to
see:

The first case may simply be treated as stated above.
\ hbox to \ hsi ze{\ hfil | Text......... \ hfil I'}

The second one would not work with these commands, instead you have
to use:
\ hbox to\ hsi ze{\ hss. ... Text...\hss}

You probably remember the discussion a few pages ago. So you may say:

\ spaceski p=2. 78pt

\ xspaceski p=\ spaceski p
\ pretol erance=1000

\ri ght ski p=0Opt pl us 5cc

In order to get the result for our third case. AfterText.... you'd've
been forced to reset all parameters to their original settings, which is easy

supposing you really know them. It probably would require to debug the
default settings first by saying:

\ showt he\ spaceski p
\ showt he\ pr et ol erance
\ showt he\ ri ght ski p

in order to know the exact values for these values, so you may reassign
them afterText..... Many high-level programming languages don’t
need that, they are block-structured and stack-oriented and so is TEX. The
only thing you need is some kind of bracketing. In TgX the symbols for
brackets may be chosen at will, but the default setting appears to be practical
and useful and it reminds of other programming languages. Block begin
is {and block end is }. The easiest solution to reset your parameters is
embracing your block with brackets.

{\ spaceski p=2. 78pt
\ xspaceski p=\ spaceski p
\ pretol erance=1000
\ri ght ski p=0pt pl us 5cc

We also showed how to do centered text with several lines and numbered
or itemized paragraphs. So we presumably can handle all these kind of
layout elements for a document’s page. But what about something popular
like this:

L]

Here we can’t use any of those parameters we’ve learned so far.

Let the first character be a “C” in Uni ver s- CondensedBol d. The height
of this character apparently is 3\ basel i neski p of the capital height of our
normal font. This is also a good example how to handle sizes in TgX.

\ di nensi on\ Chei ght
defines a new variable for a dimension.
\ Chei ght =3\ basel i neski p

assigns the value of 3 baselineskips to the variable \ Chei ght .

\ set box0=\ hbox{ AFGC}
\ advance\ Chei ght by \ ht0

\ box0 contains capitals in the normal font. So \ box0 has to have the height
of the capital letters of this font, more precisely, the height of the highest
of those 4 characters AFGC, which ever this is. We advance \ Chei ght by
the height of the capitals in the standard font. \ Chei ght now contains the
desired height for the capital height of our paragraph initial, which is a C.
But still it would not be correct to say:

\ f ont\ b=Uni ver s- CondensedBol d at \ Chei ght

The resulting characters, in particular our C, would turn out to be way
too small to cover the first 3 lines. Remember our discussion about fonts.
So in fact we have to choose the font for our C in the following way:

\ f ont \ b=Uni ver s- CondensedBol d at 1.5\ Chei ght

The capital height is 2/3 of the fontsize. Consequently the fontsize has to
be chosen 1.5 times bigger in order to get a C that is exactly \ Chei ght high.

This is one way to do it. But let’s talk about real fancy character styles
in a font, where 2/3 is not the general height of any capital character. isn’t
there a chance adjust the size of a character C that will fulfil our need for a
character being 3\ basel i neski p high.

There sure is a way.

\ newdi men\ si ze

\'si ze=10pt

\'l oop

\ f ont \ b=Uni ver s- CondensedBol d at\si ze
\ set box1=\ hbox{\ b C}

\ advance\ si ze by 1pt

\ifdimhtl <\Cheight\repeat

This is a way to iterate the desired size to an accuracy of 1pt, which is fairly
appropriate for this kind of application. But we ought not to exaggerate the
accuracy, because TEX will select a new font every time the loop is iterated,
which finally will fill the entire internal TgX memory with font descriptors.
But TEX not only provides loops like any other computer language, but
also means to do calculus to a certain extend. There is multiply, divide
and advance, where advancing something by a negative value correspond
to substraction. Thus no need for a special function for this. But there are
many different types of data, which are not necessarily compatible.

\ newcount\ a
\a=1
\'advance\a by 1

is definitely correct

\ newcount\a

\ newcount\ b
\a=1

\ b=10

\advance\ a by\ b

still is right.

\ newdi mren\ a

\ newcount\b
\a=lcm

\b=1

\advance\a by \ b

will not work due to the incompatibility of types. You certainly may not

mix counts and dimensions, but you may easily say:
\'advance\ a by\ b nm

At the end you may mix all kinds of data-types, if you keep track of the
according units.

Calculating is very important for typesetting. Almost all sizes have some
sort of interrelationship. Therefore calculus is important. There are a few
ways to calculate with TEX. The commands

\multiply
\ di vi de
\ advance

just do integer calculation, so they may not be used for any calculation
where relations are expressed by fractions. Things are more difficult in those
cases. Have a look at the macro-package P, CTEX, to see how a floating point
divide and multiply may be programmed in TgX.

It took us a long way just to pick the right size for our paragraph initial but,
we still have no paragraph with it. Now we want to produce a paragraph
with the following characteristics:

The first line is \ hsi ze long with the initial sticking down two lines. So

the second and third line is shorter by the width of the initial character
C and all other lines are \ hsi ze long again. This is something you can’t
easily obtain with commands like \ hangi ndent or \ parindent, because
they simply do not provide enough flexibility to control more than one line
or consecutive lines with different behaviour. (For those who know TgX and
are protesting, I simply say there are always 142 and one way to solve the
problem).

Now let’s first contemplate how to manipulate the initial C so that it will
behave the way stated above.

Vboxes

Characters come in boxes . The size of the box is determined by the height
of the containig character and it width. So our C initially looks like this:

C

A paragraph simply written with this kind of C would come like this:

@

which is not what we want. The C has to be changed into a flat box
capital height high of our normal font. Let the normal font be:
\ font\ a=Ti nmes- Ronan at 10pt

Remember how to obtain the height of capital characters in our font \ a:
\ set box0=\ hbox{ ABCTL}

The height of \ box0 became the height of the capitals ABCTL. There is
no need to put all capital characters in \ box0 but just to make sure I picked
a private collection; you may as well just use one single A. We now would
like to put our C in a box that is \ ht 0 high and C stick out at the bottom.
Here is how to do.

\vbox t o\ ht 0O{\ hbox{ C}\ vss}

There is a command called \ vbox giving control over vertical boxes of any
height, in our case a box with \ ht 0. Vboxes have a very special behaviour.
They usually extend to the width of the surrounding box, in our case \ hsi ze,
unless they contain nothing but a \ hbox. So this:

\vbox to\ht 0{C\vss}

is a C in a box \ hsi ze long, that is the complete length of the first line.
Containing nothing but a \ hbox does not necessarily mean a limitation to a
single \ hbox. Complex constructs like:
\ vbox{\ hbox{. ..\ vbox{\ hbox{\ hbox. 1131}

are undoubtedly valid, in fact boxes may be nested as deep as your
imagination and concentration reaches, but to make the width of a box be
controlled by what it contains, the first inner element must be a \ hbox and
nothing but a \ hbox please note things like:
\ vbox{ \ hbox{. ..

will extend the \ vbox immediately to the size of the surrounding box,
usually \ hsi ze. Worse: it will create a single line with a space and a error
message that says something about an underfull box and a second line with
the contents of the \ hbox.

If we now put our C in a \ vbox at height \ ht 0, then C sits in a box much
higher than \ ht 0 so, the \ vbox will be overfull because the lower part of
our C sticks out at the bottom. Therefore typing something like:

\ vbox t o\ ht 0{\ hbox{ C} }

would result in an error message saying Overfull vbox badness 10000. In
order to avoid this, there are similar positioning commands as for an \ hbox.
All of them now start with v

\ vfil |
\vss
\vskip

A\ vfil | is a stretching element extending only in the positive direction.
It is useful to center objects in a vbox, i.e.
\vbox t o 20\ basel i neski p{\vfil | Text....\vfill}

or in combination with \ vski p it may be used to position material at an
exact place.

\vskip3cm. ... Text....\vfill
or from the bottom
\vfill\vskip3cm

24]

We will use this later to construct page layouts and you will see that
working with boxes is a very important and frequent job. Back to our C in
the box. The \vbox t o\ ht 0{\ hbox{ C}\ vss} is right the kind of character
we need to construct our paragraph. Using this character will result in the
following output:

L1
-

[
[
[
[
[

This is much closer to what we intended, but how we get control over
the next lines? Here is a new command that does exactly this: \ par shape.
With parshape you may assign each line of a paragraph a specific length
and indent, here the values for our case:

\I engt h=\ hsi ze
\'advance\l ength by -\ Owi dth
\ par shape Opt\ hsi ze \ Owi dt h\ | engt h \ Cwi dt h\ | engt h Opt\ hsi ze

There are apparently 4 pairs of numbers giving for each line the individual
indent and the according line length. The first parameter of parshape says
how many lines will have individual sizes and then the sizes follow, first
the indent and then the line length. This is why we had to calculate the
length first by substracting \ Cwi dt h. The careful reader might have noticed
that just four lines are given instead of 7, which is the total number of lines
of our sample paragraph. \ par shape features the property to maintain the
last value for the rest of the lines in a paragraph.

Here it is at last, our paragraph with a big initial C:

C N1 1
' [1
[]

[1

[]
]

And this is the set of commands that does it:

\ font\ a=Ti mresRorman at 10pt

\ set box0=\ hbox{\ a ABCTL}

\ Chei ght=\ht1

\ advance\ Chei ght by 3\ basel i neskip

\ f ont \ b=Uni ver s- CondensedBol d at 1.5\ Chei ght
\ set box1=\ hbox{b C}

\vbox to\ ht 0O{\ hbox{\ b C\vss}

\I engt h=\ hsi ze

\'‘advance\ hsi ze by -\wd1l

\ par shape 4 Opt\ hsi ze \wd1\ | engt h \wd1\ | engt h Opt\ hsi ze
...... Text....

Sounds awful, doesn’t it. Well for ease of use TgX has an additional
feature, that makes life easier when we need special effects like those more
often. It would be tedious to do all the writing over and over again just to
get this kind of effect on the plot. Therefore we can simply assign a name
to all this and use it as a macro.

Macr os

With this feature our clumsy something above would turn into a handy
little command of our own choice, like this:

\ def\ I {\set box0=\ hbox{\a ABCTL}
\ Chei ght=\ht 1
\ advance\ Chei ght by 3\ basel i neski p
\ f ont \ b=Uni ver s- Condensed- Bol d at 1.5\ Chei ght
\ set box1=\ hbox{b C}
\vbox t o\ ht 0{\ hbox{\ b C}\vss}
\'l engt h=\ hsi ze
\ advance\ hsi ze by -\wdl
\ parshape 4 Opt\hsi ze \wd1\ |l engt h \wd1\ | engt h Opt\ hsi ze}

But macros can do a lot more. Suppose you need this initial letter game

for different applications, and especially for different initials. Macros can
have parameters, so that something like this may be written:
\IC..... Text.....

We simply change our macro into the following
\def\1#1{. ..

The parameter #1 will be replaced by the according character, in our case
a C. You may have more than one parameter. More precisely apparently
9 because there is just one character available to specify the parameters
number. Unfortunately you may have no parameters with two or more
digits, but I will show solutions for this in special applications. In our case,
for instance, we supposedly would like to give the number of lines the
initial character should cover. So we can write:

\I2C ..Text... or \11C .. Text...

But this would require a mechanism to alter the parshape command by
other commands.

So lets have a closer look at macros. A brief glance in the TeXbook in the
chapter macros, reveals a bunch of different commands to define macros:

\ def

\ edef
\ xdef
\ gdef

With the help of those and some additional mechanism, we can achieve
the most tricky results to define and manipulate macros. Our goal is the
automatic construction of a parshape command depending on a given
number of lines that we want to indent for the initial character. In case
of just one line our parshape command has to look like this:

\ parshape 4 Opt\ hsi ze \ Cwi dt h\ | engt h \ Cwi dt h\ | engt h Opt\ hsi ze

The more lines we want, the more often the part \ Oni dt h\ | engt h has to
be repeated. In a classic programming language this would look like this:

A$="\ par shape 4"

for i=1to NWiere nis the desired nunber of |ines
A$=A$ + "\ Chei ght\ hsi ze"

next i

A$=A$ + "Opt\ hsi ze"

TeX provides all necessary commands like if, then, el se and even

the command | oop. So lets start to translate our Basic Program into TgX
commands:

\def\ A{}
\loop\ifnumi < #1
\edef\A{\A\Ow dt h\I engt h}
\advance\i by 1\repeat
\ edef\ A {\ parshape\i Opt\hsize\ AOpt\hsize}
VA ... Text....

This is it, the command \ edef makes it possible. This command simply
expands any macro in a new definition, before completing this definition.
\ A is empty at the beginning, walking through the loop it initially yields
\ Owi dt h\ | engt h then \ Owi dt h\'| engt h \ Owi dt h\ | engt h and so on and we
finally get as many \ Owi dt h\ | engt h commands as we want. When the loop
is completed, we may give our \parshape the finishing touch with the
same trick. But we have to remember that we added two additional line
parameters and have to increase the number of lines we want to control by
2. The complete macro to produce initials of arbitrary size looks like this:

\def\ | #1#2{\ set box0=\ hbox{\ a ABCTL}
\ Chei ght=\ht 1
\ advance\ Chei ght by #1\ basel i neski p
\ font\ b=Uni ver s- Condensed- Bol d at 1.5\ Chei ght
\ set box1=\ hbox{b C}
\vbox t o\ ht 0O{\ hbox{\ b C}\vss}
\I engt h=\ hsi ze
\ advance\ hsi ze by -\wdl
\def\ A{}
\loop\ifnumi < #1
\edef\ A{\ A\ Owi dt h\I| engt h}
\'advance\i by 1\repeat
\ edef \ A{\ parshape\i Opt\hsize\ A Opt\hsize\A}}

At this point we almost know all the different mechanisms to manipulate
a single paragraph. What we don’t know is how to create perfect lines
and perfect line breaking. We were already talking about hyphenation and
the importance of interword spacing, but there is more than this. Take a
simple example we are all familiar with: paperback books, also called pocket
books. These books have a very simple layout, just plain text of 40 to 65

27

characters per line, one single font and nothing special, you might think. But
the typesetting of those books is governed by very subtle rules to improve
readability.

Br eaki ng Li nes

The idea is to get paragraphs with just a few hyphens, the fewer the
better, and if possible no hyphenation in the line before the last line in a
paragraph. In addition, if there are hyphenations necessary, which is hard
to avoid, no two consecutive lines should be hyphenated in order to avoid
a right paragraph border, that looks like a comb. All this can be controlled
with TEX and this is where we go deep into the theory and practice of
how TgX does linebreaking and why. To commence with this of subject,
we first should become familiar with the parameters and their meaning,
that influence linebreaking. Then we will talk about the TEX process and
interaction of those parameters.

\tol erance\ pretol erance
\ hyphenpenal t y\ exhyphenpenal ty\ |l i nepenal ty
\ adj deneri t s\ doubl ehyphendeneri t s\ final hyphendenerits

Only an example can help to a closer understanding of what happens in
TeX with these parameters. Lets take a text-material like the following in
10pt Times-Roman, typeset to 10cm width:

VWhen wi || we neet againin thunder Iightning or inrain.

The quality of a breakpoint depends on all of the above parameters. TEX
assigns different brakpoint a badness value in the following way:

The width of the characters are added and constantly compared to the
desired length, usually \ hsi ze. The closer we get to \ hsi ze, the more the
line may be justified by the ”stretchability” of the interword spaces. But
because spaces may be stretched and shrunken, TeX will find several, usually
two breakpoints for one line. In our example these breakpoints would be:

VWhen wi || we neet againin
or
When wi || we neet againin thun-

There are two possible ways to typeset our phrase. The first one takes more
stretching, whereas the second one is denser and already uses shrinking.
The first line therefore has a higher value for badness than the second
one, consequently TEX would pick the second breakpoint. This kind of
automated line-breaking probably might not be our choice. We have all
kinds of parameters to influence TgX’s decision in our direction of thinking.
The badness of each breakpoint is compared to the values of \ pr et ol er ance
and \tol erance. This is because TgX first does line-breaking without
hyphenation. For the first pass the resulting breakpoints are compared
in their values of badness with pretolerance. If pretolerance is big enough, it
will always cover even the worst breakpoints. In our example the breakpoint
after "in" has a badness of 2400. Any pretolerance higher than this would
favour that breakpoint. A value smaller than 2400 apparently will disallow
this breakpoint. This ensues a value of -1 to disallow all breakpoints found
in the first pass, where no hypenation is applied. This does not necessarily
mean that a pretolerance of -1 results in all lines being hyphenated, but it
says the first pass trying it without hyphenation will always fail. Whereas a
value of 10000 will always succeed, because no breakpoint will ever have a
badness greater than 10000. Remember our ragged right paragraph we had as
example a few pages ago. Here is the reason why it works. When it comes to
the second pass, all the words in a paragraph are cut into pieces through the
hyphenation algorithm. And the process of assigning badness to breakpoints
recommences. This time breakpoints with hyphens are added to the list to
those without hyphens. The badness of each breakpoint is compared to a
value called \t ol erance, and again, if \ t ol er ance is high even lines with
high badness are considered acceptable. The higher the \tol erance, the
more lines may be stretched to fit into the desired justification margins,
this results in an awful looking paragraph. In good typesetting an exact
value for the interword stretchability and shrinkability and a low value of
\tol erance would be desirable. Something like:

\tol erance=10
\ xspaceski p=\wdO pl us 1. 3\ wdO mi nus . 3\ wdO
\ xspaceski p=\ spaceski p

is a very reasonable choice. But this still would not avoid esthetically bad
breakpoints like consecutive hyphenated lines or the second-last line to be
hyphenated. Additional parameters serve to tackle this problem.

\ hyphenpenal t y\ exhyphenpenal t y\ penal ty
\linepenalty

30

With these penalties you may assign badness values to each resulting
breakpoint. These values are taken into account to rate the quality of a
breakpoint. So hyphenation may as well be avoided by assigning 10000 to
\ hyphenpenal ty. Due to performance reasons this is not the recommended
way to avoid hyphenated lines. Any smaller value, though, is the only
feasible method to get paragraphs less hyphenated. For paperback-books
a value of 5000 is reasonable. With the general parameter penalty you
may assign any position in your paragraph a specific breakability or
unbreakability. Consider the following example:

a di stance of about 10 m

It definitely will lead to an unpleasant appearance if just by coincidence
the linebreak occurs between tt10 and m So you may use plain TgX's tie ~.
which turns out to be

\ def ~{\ penal t y10000\ }

As you may see, the following breakpoint before a space is prohibited
due to the largest possible penalty just before the space. Please note: don’t
try it this way:

\ def ~{\ \ penal t y10000}

This still would incidentally result in a line broken just between 10 and m
Breakpoints are calculated before spaces and not after them. Therefore this
command is entirely obsolete. But still the solution for our above example is
not very professional. Expressions like 10 m or 100 C have a fixed spacing
between the value and its unit, so something like this is much better:

10\ kern3pt m

Kerns are not considered valid breakpoints unless they are followed by
some stretchable item like a space again.

Sometimes it is desirable not to avoid breakpoints, but instead to force
them explicitly. In this case negative penalty values help. Values like
\ penal t y=-500
tells TEX that this point is acceptable in case of doubt, but it not necessarily
results in a line that is broken at this place, when TEX finds an even better
place on it’s way through the paragraph. If you prefer a breakpoint like the
following:

a di st ance of
about 10 m

you may suggest this to TEX by typing:
a di stance of \ penal t y=-500 about 10 m

The more negative the penalty value gets the more this breakpoint will
be considered to be a good one and if you say \ penal t y=-10000 the line
will be broken at this point by brute force. This is very helpful to control
individual lines in a compound paragraph. There exist 3 typical forced line
breaks in the typesetting world:

1.) line break with justification
2.) left aligned line
3.) right aligned line

The first case is simply \ penal t y- 10000 also defined as \ br eak in plain
TEX. The second case requires, that the line is filled with empty space, which
may easily be done with a \ hfil |\ penal t y- 10000. The last version is not
possible with TgX, because we get no clue about the typesetting process and
linebreaking before it is actually done. Because we have no real knowledge
about how lines finally come out, when we are in the process of typing
them, therefore we know nothing about the end of the previous line. As a
consequence two lines have to be broken by hand to get the desired result.
First a justified line preceding our right aligned line and the right aligned
line itself.

..... Text....\break
\hfil IText....\break

This may sound reasonable, but it will not work. TgX removes all empty
material after breakpoints, so we loose the effect of \ hfil I , which forces us
to put some empty horizontal material at the beginning of the line. Here is
how it works:

\ hbox{}\ hfil | Text....\break

The hbox is empty, but it is not discardable as a lone \ hfil | would be.
What we derive from this is that TgX is not built for single-line breaking.

We are still talking about parameters influencing line break. There are a
few left unmentioned, in particular the demerits.

These values may be used to influence the special cases I mentioned
twice, e.g. for the production of paperback-books. The parameter
\final hyphendenerit forces or prohibits the second last line to be
hyphenated. \doubl ehyphendemerit serves to avoid or force two
consecutive lines to be hyphenated and the tricky parameter \ adj denerits
deals with line compatibility.

This sounds much scarier than it is in practice. Each line gets a rating
whether it’s loose tight or very loose. Two consecutive lines may now in

accordance with \ adj denerit be loose followed by tight or tight followed
by very loose.

The demerits differ from penalties not only in name. The values for the
demerits have to be chosen much higher than penalty values to achieve the
desired effect. If we want to avoid hyphenation in the second last line, a
finalhyphendemerit of 100000000 would do it for sure, whereas a value of
10000 would not guarantee the same effect. This is because demerits have
to be chosen as the squares of penalties.

Here are some practical examples to demonstrate the effect of our
parameters in the real world applications.

The idea is to get paragraphs
with just a few hyphens, the
fewer the better, and if possible
no hyphenation in the line be-
fore the last line in a paragraph.

t ol erance=100
retol erance=0

i nepenal t y=5000
hyphenpenal t y=0

doubl ehyphendeneri t s= Odouble yphendereri t s=0doubl ehyphendenerit s=0

adj denerits=0

ﬂnalhyphendenerits=0

The idea is to get paragraphs
with just a few hyphens, the
fewer the better, and if possible
no hyphenation in the line be-
fore the last line in a paragraph.

t ol erance=100
retol erance=-1
i nepenal ty=0

hyphenpenal t y=0

The idea is to get paragraphs
with just a few hyphens, the
fewer the better, and if possible
no hyphenation in the line before
the last line in a paragraph.

t ol erance=100
r et ol erance=0
inepenaltr:
hyphenpenal t y=10000

adj denerits=0

ﬁnalhyphendenerits=0

The idea is to get paragraphs
with just a few hyphens, the
fewer the better, and if possi-
ble no hyphenation in the line
before the last line in a para-
graph.

| ooseness=1

t ol erance=1000

Fretolerance=0
i nepenal t

doubl ehyphendener i t s=Ohyphenpenal t y=0

adj denerits=0

doubl ehyphendenerits= Odouble yphendenerlts =0

final hyphendenerits=0 adj denerits=0

The idea is to get paragraphs
with just a few hyphens, the
fewer the better, and if pos-
sible no hyphenation in the
line before the last line in a
paragraph.

| ooseness=1

t ol erance=1000
retol erance=0
i nepenal t
hyphenpenal t y=0

final hyphendenerit s=0

The idea is to get paragraphs
with just a few hyphens, the
fewer the better, and if possi-
ble no hyphenation in the line
before the last line in a para-
graph.

| ooseness=1

t ol erance=1000
retolerance 0
i nepenal t
hyphenpena t —0

The idea is to get paragraphs
with just a few hyphens,
the fewer the better, and if
possible no hyphenation in the
line before the last line in a
paragraph.

t ol erance=100
ret ol erance=10000
i nepenal ty=0
hyphenpenal t y=0

adj demer 1t s=0

ﬁnalhyphendenﬁrits=0

The idea is to get paragraphs
with just a few hyphens, the
fewer the better, and if possi-
ble no hyphenation in the line
before the last line in a para-
graph.

| ooseness=1

t ol erance=100
Pretolerance=0
i nepenal t
hyphenpenal ty

adj demer 1t s=0

final hyphendenerit s=0

The idea is to get paragraphs
with just a few hyphens, the
fewer the better, and if possi-
ble no hyphenation in the line
before the last line in a para-
graph.

| ooseness=1

t ol erance=1000
retol erance=0
i nepenal t
hyphenpenal t y=0

doubl ehyphendeneri t s= Odouble yphendenerlts- doubl enyphendenerit s=0

adj denerits=0 100000000 adj denerits=100000000

final hyphendererits= adjdenmerits=0 final hyphendererit s=0
100000000 final hyphendernerits=0

The idea is to get paragraphs with

just a few hyphens, the fewer the better,
and if possible no hyphenation in the
line before the last line in a paragraph.In
addition, if there are hyphenations neces-
sary, which is hard to avoid, no two
consecutive lines should be hyphenated
in order to avoid a left paragraph bor-
der, that looks like a comb. All this

can be controlled with TeX and this

is where we go deep into the theory and
practice of how TgX does linebreak-

ing and why. To commence with such a
kind of subject, we first should be-
come familiar of the parameters and their
meaning, that influence linebreak-

ing. Then we will talk about the TgX pro-
cess and iteration of those parameters.

ri ght ski p=Opt plus .3cc m nus. 3cc
par fil | ski p=0Opt
spaceski p=2pt plus. 1pt m nus. 1pt
t ol erance=9900

retol erance=-1

i nepenal t?/:o
hyphenpenal t y=0
doubl ehyphendeneri t s=0
adj dener it s=- 100000000
final hyphendenerit s=0

The professional typesetter might have noticed, that something is missing
that most typesetting systems provide for better hyphenation control, i.e. a
mechanism to predetermine the length of the pieces a word might be broken
into by the hyphenation process. This has been introduced in the 3.0 version

of TX.

We now have considered different examples for single paragraphs with
the main objective of esthetical quality, but in some cases more than this
required is required. In paperback-books you may never use vertical glues in
order to construct a page of a desired length. But as an additional constraint
pages may never lead to widowlines on the following page. The only
reasonable solution is to typeset paragraphs one line longer than what they
might naturally be typeset obeying the according parameters like penalties
and tolerances. For this purpose TEX has a parameter called \ | ooseness.
The \| ooseness=1 i.e. leads to a paragraph that is one line longer than
its natural length, but only when \tol erance allows this. Unfortunately
TEX has no parameter that would tell about the success of looseness. This
results in very complicated actions to be undertaken in order to determine
the paragraph, that will get one line longer with the smallest necessary
tolerance.

The preceeding chapters demonstrated the difficulty of creating
paragraphs and headlines of esthetical quality. This is very important for
the understanding and use of any typesetting system, because in the real
world of typesetting, producing output doesn’t commence with the page

layout, footnotes and tricky multicolumn pages, but with the single lines
itself. A typesetter always produces a proof or galley first. This galley was
and still is cut into pieces and glued into the page layout by a different
person who actually has a different profession. This person is taking care of
mounting the page layout, and you wouldn’t believe that still today, with
all WYSIWIG and screen oriented typesetting masterpieces of software, it
is very hard almost impossible, to beat a person doing a layout by hand
with a computer. I would’t recommend a tournament where TEX or any
other typesetting system software tries to combat hand assembly. But TEX
can do automatic mounting in a page layout, which we will discuss in the
following chapters. In these cases TEX can do assembly work much much
faster than anybody.

This is true for all kinds of material that may be standardized e.g. pocket
books, monthly or weekly reviews and many others. This kind of literature
comes in standard formats and as a matter of fact the editor and publishers
standardize layouts and usually they stake the rules the layout should look
like.

Producing a complete page of typeset material may be roughly divided
into three steps:

1.) produce a galley

l.alet it proofread

1.b produce a corrected galley, repeat 1, 1.a, 1.b until satisfied
2.) cut the galley at the appropriate places

3.) glue the pieces into the predetermined layout.

What sounds easy, actually isn’t. To the contrary the point of discussion
will be: what are the appropriate places

Both examples show bad places to cut our sample galley into pieces. It
sure is a bad idea to have the header of a chapter sitting on the bottom of our
column or page and the rest of the chapter starting on top of the next page
or column. This is also true for a first single line hanging onto the header,
loosing the rest in the middle of nowhere. But when other breakpoints are
better, i.e. two or more lines together with the header, we run into further
trouble, because the pieces we cut from our galley incidentally tend to be
too long for our page or they get too short. bottomline: choosing the right
point to cut a galley is a very delicate task.

This reminds us of the problem of breaking paragraphs into lines and
indeed it turns out to be a very similar problem. it just rotates the problem
by 90" from horizontal to vertical. this is the way how TgX thinks about

the problem and we consequently find two modes in TgX, a vertical and a
horizontal mode.

most of our parameters that we’ve learned for the horizontal mode will
not be applicable for the vertical mode, yet one of them is \ penal ty. so we
actually have a parameter in common for the horizontal and vertical mode.
with this parameter it must be possible to control our galley-cutter. Here an
example:

\ Header
\ penal ty 10000

there are similar parameters for vertical breaks, as there are for horizontal
breaks. Here a summary:

\cl ubpenal ty

\'wi dowpenal ty

\ br okenpenal ty
\interlinepenalty

The \ cl ubpenal ty forces or prohibits the first line of a paragraph to be
considered a reasonable breakpoint. The \ wi dowpenal ty does the same for
the last line of a paragraph. The \ br okenpenal ty serves for lines that end
with a hyphenated word. And \i nterlinepenal ty is an overall penalty for
all lines in a paragraph. We notice the same flaw in the TEX concept that
appeared for breaking lines in a paragraph. We have no parameter to assign
penalties to individual lines i.e. the third or fourth line in a paragraph, so
that we can’t control the size of the pieces a paragraph may be split into.

I already mentioned the effect that cut pieces of our galley tend not to fit
into our page layout. There are two cases to be considered. Either we may
justify lines by stretchable and shrinkable elements like interword spaces or
we may not. This is true for vertical lists, too. Either we may put stretchable
or shrinkable elements in the vertical list i.e. between paragraphs or we may
not.

If stretching and shrinking is prohibited for linebreaking, TEX consequently
produces lines of different length. If stretching and shrinking is prohibited
verticaly for page-breaking, the result will be pages of different length,
which usually is not quite what we want.

36]

We remember the according parameter \ spaceski p and \xspaceskip
for horizontal material. For the vertical mode there is \ parski p and the
equivalent parameters to \ hfill, \vfil| and \hss, \vss, that we already
mentioned for vboxes.

The pr obl emof ski ps

In general we choose a font for our document first. The font size requires
an appropriate baselineskip, which is very important for the appearance
of a document’s page. A typical font size of 10pt may be typeset with a
baselineskip of 11pt, just to give an example. But there are other possible
solutions. In typesetting we have three major different kinds of baselineskips.

1.) compressed
2.) normal
3.) wide.

Compressed is easy to choose. Take the font size in pt, choose the same
value for baselineskip in didot. i.e.

\ font\ a=Ti nes- Ronan at 10pt\a
\ basel i neski p=10dd

Characters will never touch each other on top and bottom, because
didot are slightly bigger than points are. Compressed is used for footnotes,
marginal notes, abstracts and special headlines.

Normal is 110% of the font size. A 10pt font would require a baselineskip
of 11dd for the normal text-body. The book you hold in hand is configured
this way. A 20pt font would require a 22dd baselineskip to conform to this
rule. In the real world the rule is applicable for fonts from 8pt to 17pt.
Bigger fonts need more spacing between lines, therefore the relationship
between font-size and baselineskip is not linear for all font sizes.

Wide will therefore be used for large fonts or document pages with a
sketchlike outfit with typewriter-font, i.e. Wide is chosen by multiplying the
font size by 1.4 and using this value in didot as baselineskip.

Eventually the value for baselineskip is logically chosen bigger than the

value for the font size. A normal capital letter will consequently always fit
into the space between two baselineskips

baseline 1

A g baseline 2

T baseline 3

No collisions will ever occur even in compressed format. Remember: the
entire character fits into a surrounding box of fontsize. 1/3 of this box is the
height of the capital letters and 1/3 is the depth of special characters like
2,,p,q,y. But what happens if a line contains oversized characters or other
oversized elements? To handle those kinds of problems TgX supplies two
additional parameters for baselineskip

\l'ineskip
\lineskiplimt

Those two parameters control the behaviour of baselines in case they get
too close together. Let’s consider the following example:

baseline 1 .
frequency, you will be able tg —’

. . . . \
lineskiplimit=0pt————7_ %] hat 1 (27

baseline 2—

The lineskiplinmt represents an imaginary boundary beneath the
standard baseline. A threshold trespassed by the height of any character like
the question mark in the above example triggers TEX to undertake action in
order to separate lines for minimal readability by the amount of lineskip.
Suppose | i neski plinit=2pt and | i neski p=3pt, basel i neski p=11dd. The
following would happen:

baseline 1 . ’
hneskiphmitzoptl__fneqmm%gmﬂﬂLhejhle_tg;
lineskip:Zpt/’_ make anyone do what I want?¢’
baseline 2—

The value of | i neski p will be the distance between the deepest character
on baseline 1 and the highest character (here the question mark) on baseline
2.

This effect is not what a professional typsetter would ask for, especially
because |i neski p=Opt would not deactivate this kind of action to be
performed by TgX.

Usually something like this would never be accepted in the pro’s world,
because it never happens unless by mistake. In this case any default action
triggered by default values is a disastrous result (mind the default values).
The only way to get rid of this well-meant feature is to say somthing like

| i neski p=0pt
I'i neskiplimt=-baselineskip

Now the oversized element must be at least two baselineskips high to
trigger the automatic justification. The justification will then be Opt .

A deeper discussion about TgX vertical skips is the unavoidable
consequence of the above discussion. The mechanism of lineskip already
shows the way how TgX calculates interline spacing. TEX would always do
the following: it gets the deepest character of the preceding line, takes the
largest character in the next line and calculates a skip positioning the second
line that sits exactly on a baseline of the first line. To get this straight, here
a picture:

letter’s depth \W f N ble to

skip

- l_),
letter’s height /

baselineskip

This is of significant importance for the understanding of how lines will be
stacked up a pile. Getting rid of the baselineskip consequently is a delicate
process. The statement

\ basel i neski p=0pt

would produce a total mess when the values of Iineskip and
I i neskiplinmit remain unconsidered. For instance,

\I'i neski p=0pt
\I'i neski plimt=0pt
\ basel i neski p=0pt

would not result in

) but: frequency, you will be able to -
‘. frdquenypnpodowithdtel abkntd — PUY— make anyone do what T want?’

I'i neski p is the skip between lines and not the skip where baseline will
go. What you see here is the result of the following proceeding of TgX: The
deepest character of line 1 and the highest character of line 2 will overlap
due to the value of basel i neski p, which is Opt. The I i neski pl i mi t =Opt
therefore will activate | i neski p. This is always true, whenever a character
of one line will overlap characters of the following line. |ineskip is 0
consequently lines will be spaced by the deepest character and the highest
characters, respectively. If overlapping lines are the intention, our parameters
have to be something like the following

\I'i neski p=0Opt %any val ue
\I'i neskiplimt=-2\baselinskip
\ basel i neski p=0pt

What happens is that due to the negative | i neski plimit no action will
activate | i neski p. Therefore the value of | i neski p is of no influence in this
case. Please remember the way TEX piles up lines. It always calculates the
difference between the highest and deepest characters of two consecutive
lines. In our case this will necessarily result in a negative value. We now have
to make sure to avoid the appearance of lineskips. |i neski p is triggered
by I'i neskiplimt. As long as | i neskiplimit has a bigger value than the
skip that has been calculated by TEX in order to align baselines in a distance
of basel i neski p=0pt, | i neski p will have no effect. This is done by

| i neski plimt=-2\baselineskip.

39

40|

Consider a table with rules to seperate fields. Here something very simple

language | TgX, Prolog, Lisp
processor | mips, Trace, CM1
toy companies | MicroSoft, Tomy

This is as simple as can be and not a very practical case but it elucidates
the proper proceeding in those cases

\ def \ L#1#2{\ hbox{ %
\ hbox to. 6\ hsi ze{\ hfil | #1}\ ker n6pt %
\'vrul e hei ght 8pt dept h4pt w dt hlpt\kern6pt %
\hbox to .6\ hsize{#2\ hfil | }}}

The first thing you will notice is that it will be a table but without the
use of a special TEX command to deal with tables. TEX does not treat tables
very different. The only difference to special table commands is that the
field sizes for the largest table element may be calculated automatically.

\ L{Il anguage}{\ TeX, Prol og, Lisp}
\ L{processor}{m ps, Trace, CML}
\ L{t oyconpanys} {1 BM Tony}

when these lines are preceeded by

\l'i neski p=0pt
\I'i neski plimt=0pt
\ basel i neski p=0pt

Each line of our table contains a vrule

AMfht|gjpqy

No character will be deeper than the vrule and no character will be higher,
so the vrule is the dominating object governing the skipping process. The
baselineskip is Opt, consequently consecutive lines will always overlap.
lineskiplinit is Opt and as a result lines that not even overlap but only

touch each other will trigger lineskip. This is true for every line. The lineskip
is Opt. The vrule will therefore sit exactly on top of each other.

This may now always be used when lineskipping is deactivated. This
occurs in tables as shown, but also in footnotes.

Remember the chapters about footnotes, where an insert-box collected the
footnote material. What happens if a second paragraph of footnotes, that is
a second footnote, comes along. The insert box is calculated the following
way:

By p1tch1ng your voice to
letter’s height that precise Ireauencv VO

W111 be able to -

— make anyone do what
T '\"IAY'\Y\‘I")’ L\n ﬁ(‘]/nf] T‘AT::-‘!:-I’\ a

AVAN« B I | I\I—_Il
AR T S CLOING L A4

child’s eagerness.

letter’s depth

If topskip is omitted the first baseline in our insert box is determined by
the highest character in the first line. Suppose the first line contains just
lower case characters in the first case and capitals in the second case

A d

There we have our first problem. There is one solution for the first
paragraph in the vbox of our footnote, insert that is to choose t opskip
at least capital height high. This might help for the first paragraph in a
footnote, but it is of no use for the second paragraph. We run into severe
problems with four cases and their permutations.

In the first case the paragraph ends with a line containing characters with
depth. In the second case the paragraph ends with a line without characters
with depth. In the third case the next paragraph starts with a line containing
capital characters, and finally in the last case the next paragraph starts with
a line having no capitals. Proper alignment can not be assured under these
conditions. In inserts (here footnotes) under compulsion paragraphs may not
be aligned by the normal baeslineskip and parskip mechanismn applicable
for the rest of the test. Because the footnote-test appears asycronous to the
normal linebreaking algorithm. Consequently even with proper baselineskips
in between footnote paragraph-lines, we won't have this for several of those
paragraphs.

The idea to avoid all problems is very simple. The first and the last line
of each paragraph has to contain an element at least capital height heigh of
the chosen font and deep as the deepest character of the chosen font may
get. This can be done with a so-called strut, which is a vrule very similar to
the one used in our table above, but invisible. Our footnote paragraph now
would look like this:

[By pitching your voice to that precise
frequency, you will be able to -

‘— make anyone do what I want?’” he
asked with a child’s eagerness |

Having an invisible rule at the begining and end of the text guarantees
proper results in all cases mentioned above. All those who always wanted
to look behind the scenes of the bewildering footnote macro lined out in
the TeXbook: here lies the key for the proper understanding.

The subtle features mentioned by Donald E. Knuth lie in the fact that in his

macro, each character is followed by an invisible rule. The recursive macro
reads character by character and puts a vrule after each of it. This allows all
imaginable manipulation to be applicable to those kinds of footnote insert,
without running into the trouble of loosing the proper linespacing. In most
of all cases the solution is overdone and very hard to read and to program.
I therefore recommend the simple solution, lined out above.

There is nothing more to say about skips beside the general skip called
vski p. vskip is simple to use and to understand. A vskip is added to
basel i neski p, when there is

baselineskip=10dd
baselineskip=10dd

baselineskip=10dd

a baseline. vski ps are thrown away whenever a page break occurs. Take
this book for example. Each chapter headline has a

\ goodbr eak\ vski p3\ basel i neski p

before and

\ nobr eak\ vski p2\ basel i neski p

after each headline. A pagebreak occurs preferably before the headline
starts and is forbidden between headlines and the beginning of the chapter’s
text.

When the pagebreak really occurs at the beginning of a chapter it would
not look nice if it started with 3.5 lines empty space. TEX knows this, and
always discards obsolete skips. Therefore you may never start a page with

\'vski p 10\ basel i neski p
MY ARTVORK

The ARTWORK would sit right on top of the page, because the skip will
be discarded. If you need something like this, say

\ hrul e hei ght Opt dept hOpt
\ vski p3\ basel i neski p

a rule, even the invisible one, may not be discarded. The only disadvantage
of this method is the special behavour of hrul e. If you say:

\ hbox{ abcde} \ hbox{ abcdef g}
\hrul e or \hrule

you will get abcde abedefg

Note the difference! TEX will not calculate lineskips for hrules! This is
no reason to worry. A hrule still is a prefect means to make vskips
undiscardable. The following example shows, that the two expressions
shown below are perfectly equivalent and represent 4 lines. This can easily
be verified with the third diagram showing the corresponding size for four
normal lines.

\hrul e \
\ vski p3\ basel i neskip and \ vski p3\ basel i neskip
My Art wor k My Art wor k

A
B
C
My Artwork My Artwork My Artwork

Constructi ng pages

We learned about the mechanism how to cut the galley into appropriate
pieces, now it’s time to put pages together. The first step to do so is to
analyse carefully the construction of your layout. Let’s take an example

Headline pagenumber ! |:

Textcolumn Textcolumn Textcolumn

A B C

a table
or
a picture

Footline

We can always easily construct the according assembly directives for TgX
without any text in dealing with boxes that we might as well define right
in the first place. Here we have

\ newbox\ col ummA
\ newbox\ col umB
\ newbox\ col unmC

Suppose the boxes A to C already contain typeset material. Then we can

simply start the construction of our page layout. Always start in horizontal
direction with the smallest element from inside to outside.
\hbox{\box\columB\hskip6pt\vrule\hskip6pt\columnC}

We put these two columns in a vertical box together with the box
\'t abl ebox:

\vbox to\cl engt h{%
\ hbox{\ box\ col unB\ hski p6pt\ vrul e\ hski p6pt\ col umcC} %
\ hbox\ t abl ebox}

I put % signs after each line, to avoid unsolicitated spaces in our \ vbox.
Column B and C are completed and represent a counterpart to column A,
we can proceed with.

\ hbox{\ box\ col umA\ hski p6pt\ vrul e\ hski p6pt %

\vbox to\cl engt h{%
\ hbox{\ box\ col unB\ hski p6pt\ vrul e\ hski p6pt\ col umcC} %
\ hbox\ t abl ebox}

You probably have noticed that there is no need to give the length for
the vrule. The \ vrul e extends to the length of the surrounding \ vbox. The
page layout is almost completed; just the header and footer are missing.

\ vbox{\ hbox t o\ pagewi dt h{ Headl i ne\ hfil I \ t he\ count 0}
\ vski p3mm
\vbox to\cl engt h{%
\ hbox{\ box\ col umb\ hski p6pt\ vrul e\ hski p6pt\ col umc} %
\ hbox\ t abl ebox}
\ vski p2mm
\hrule
\ hbox t o\ pagewi dt h{f oot | i ne\hfil | }}

you should carefully study this kind of page construction to get a full
flavour of the power of this kind of solution. If the boxes \ col utmA through
Cactually already contain material you may simply say \ shi pout in front of
the complete construction and your first page will come out. Unfortunately
this is not the case unless your galley has been carefully cut already
beforehand into the boxes \ col umA through C.

Here now comes the interaction between your galley and the assembly
of your page. Whenever TgX finds a good breakpoint in your vertical list
it will immediately stop and execute a specific list of commands collected
under the keyword \ out put . So we may say

\ out put ={\ vbox{\ hbox t o\ pagewi dt h{t ext | ayout\ hfil I \ t he\ count 0}
\ vski p3mm
\ vbox t o\ cl engt h{ %
\ hbox{\ box\ col umb\ hski p6pt\ vrul e\ hski p6pt\ col umc} %
\ hbox\ t abl ebox}
\ vski p2mm
\hrul e
\ hbox t o\ pagewi dt h{ ME- magazi ne\ hfil | may 1990} }

Well, but this can’t work, because the material, we collected is not put
into the boxes columnA through C and how could TgX possibly know, that
they have to be put there. Each time TgX figures a good break point for
our galley it will activate the commands in the output routine. For one
single page it will be our job to collect the material from the galley in the
appropriate boxes, until we may start assembly work on our complete page.

The galley itself is a box, called box255 in TeX. This means TgX offers the
galley cut at a certain point according our directives in box255. Nothing is
easier than unpacking box255 and moving the material from box255 into a
box of our choice. For example like this:

\ set box\ col utmA=\ box255

This is a good idea, but in specific cases the results will be unexpected.
Usually, also in this case, we expect a column to have a specific length.
Due to many influences this is very unlikely to happen. TEX cuts columns
either in the correct length or shorter, when it goes to the output routine.
Consequently we usually have to deal with a column that is shorter than
the desired column. If the column may be stretched vertically, then there is
no problem, but the column still comes too short and how do we adjust the
length now?

\ set box\ col umA=\ vbox t o\ C engt h{\ unvbox255}

Here is the way to accomplish our job. \unvbox actually unpacks the
context of a vertical box and it may now be stretched again to the right size,
which is done by saying \ vbox t o\ C engt h. This is the standard way to do
it, and you should keep it in mind. If our \ box255 contains no stretchable
material, we are stuck and have to use the simple way.

47

48]

This is how our \ out put should look like:

\output={\if AC
\ set box\ col umA=\ vbox t o\ C engt h{\ unvbox255}
\ gl obal \'| et\ C=B\ gl obal \ vsi ze=. 7\ C engt h
\elselif B\C
\ set box\ col umB=\vbox t 0. 7\ d engt h{\ unvbox255}
\ gl obal\l et\C=C
\elselif QA C
\ set box\ col umC=\vbox t o. 7\ C engt h{\ unvbox255}
\ gl obal \' | et\ C=A\ gl obal \ vsi ze=\ Cl engt h

assenpl e as above

\ fi fi\ fi}

This output routine does the following. When TgX finds a suitable
breakpoint it jumps to the output-routine and \ box255 is unpacked and
filled into \ box\ col umA. The Variable \ C is set to B in order to activate
the \ el se\i f B\ C path for the next time TEX returns with material to the
output routine. For this event we prepare \vsi ze, which is smaller than
\vsi ze for the first column. TeX then returns to work and continues to
collect further vertical material, until it reaches \ vsi ze again. Now \ box255
will be packed into \ box\ col umB. Here we set variable \ C to C. Column C
having the same size as B spares us to readjust \ vsi ze again. TgX returns
for a collection of data and finally reenters the output routine again. This
time the \ col umC will be packed. The next pages are to be considered to
have the same layout, we therefore readjust \ vsi ze and set variable \ C to
A again. Now assembly begins, the page is shipped out and the process is
repeated over and over again. Apparently this kind of layout making will
not necessarily do everything we need and want, when the layout changes
it will fail, and worse, what happens when the text ends? How should the
layout look in this case and what happens in case TgX returns to the output
routine with the rest of the galley.

We notice TEX's mechanism to build and assemble complete pages may not
be used easily. Many things have to be considered and taken into account.

If the layout of pages is repeated over and over again, this kind of

handmade solution might sound reasonable enough, but it will be impossible
to tackle when the layout changes entirely from page to page, as it does in
a monthly or worse weekly gazette.

Instead a closer look to the real structure of a magazine page gets
mandatory. Pages don’t come in arbitrary layouts with pictures randomly
distributed over the page. Pages usually have their specific kind of layout
with recognizable rules.

H H \J There area bunchof books abol
|TEX, but none of those books givq
H H ‘ Any aspect about the real purpose

bf the TeX-typesetting |anguagg.
Because typesetting is the issle,
H H ‘ and is of nuch nore inportance

han any syntactical or semantichl
eaterism that alanguage | i ke TEX
offers. Typesetting apperantly [by
he existance of the word mnus

be—somethrmg—drferemt—to—word-
processing and sinple docunent
printing.

The page is divided by a grid, that represents a whole bunch of different
golden section, that may be filled with text and picture material. For ease
of use the grid rectangles align with the baseline of the chosen font on the
bottom and with the height of the capitals on top. Graphics, pictures and
the columns may now be put into the shown grid. The result is a very
versatile, but unified, layout for a page. The following pages are based on
the same layout.

These pages are strictly organized and we may easily construct a perfect
output routine, that is fed by general directives about the size and position
of our pictures. Let’s simply organize our raster in a matrix 3 by 8, giving
the size and position of the picture in the following way

\pic(2,1;2,3)
determines exactly the appearance of our page.

50]

This defines a picture, starting at element 2,1 and extending over two
columns being 3 elements deep.
The height of a text element is defined by the simple rule:
n *(x * basel i neski p + Capi tal - hei ght + gap)
where gap is
2 * basel i neskip - Capital height
giving the following final result:
n(x+2) basel i neski p
Consequently our picture has the height:
3(9+2) basel i neskip = 33 basel i neskip
and a width of
(elwidth + gap) * 2
The lengths of our text-columns are perfectly determined:
height of column A =8 (9+2)
B=5(9+2)
C=5(9+2)
With this we may build an output routine, that — in accordance with our
picture definition — will automatically produce the textual columns.

The definition of our three pages may be done in the following way.

\page(\pic(2,1;2,3))

\page(\pic(1,1;2,2),
\pic(6,2;2,3))

\page(\pic(4,1;2,2))

The three pages are defined as simple as can be, but the result depends
on a lot of rules and involves a lot great deal of knowledge about good
typesetting.

This is a perfect example for the quality of a typesetting language, where
lots of typesetting rules may be hidden in a program. No mouse-hazzle, no
approximation to absolute values, but quality output based on the experience
and the rules of typesetters.

There are a lot more similar applications. One will be mentioned later
again, the supposedly trivial paperback-books. This subject will show
additional constraints emerging from classic typesetting rules.

When it comes to page layout there are still additional features you might
expect in a typesetting system. The most popular, but — from the typesetters
point of view — the most unpleasing layout element are footnotes. Therefore
major rule in typesetting: avoid footnotes!

Foot not es

The structure of TEX allows to handle footnotes to any imaginable extend.
By abstraction footnotes may be considered as inserts to the text body. TgX
by it’s design nature assumes footnotes to be inserted right at the spot in
the text, where they will refer to.

TEX separates footnote and text-body and according to the macros
undertakes the desired actions. This actually is as easy as it sounds. When
TEX works on a text, it breaks lines in the way mentioned above. Lines
are piled and built in a continuously growing block up to the point where
the block gets as high as the pagesize (\vsize). At this time TEX jumps
into the output routine. There are apparently two ways to jump into the
output routine, either the block of lines shorter than \ vsi ze or the pile of
lines longer than vsize. In both cases the expected page or column height
may only be adjusted by stretching the gap between paragraphs. But there
are also applications disallowing any justification at all. When footnotes are
taken into account, the process is perfectly equivalent. Lines are broken
and piled but during line assembly a footnote occurs. What happens is that
the pagesize to be reached by textbody is taken back by the appropriate
amount of footnote height. You can picture yourself the expectable events,
here some graphical illustrations.

—— ——
resulting
insert
box
insert
>~ starts
here
— - pagegoal
" pagegoal
Step 1 Step2 Step3

This is the most common case, it has no unpleasing side effects, and is
typical for the normal use of footnotes.

Unfortunately in some specific faculties (namely law) people tend
to use footnotes remarkably immodestly. The documents significance is

underpinned by an unreasonable ratio of footnote to text, but books are
produced in this kind of layout, so we might as well face the problem. A
single footnote in a document of this kind may corrupt our good belief that
the piled bodytext and the footnotes will necessarily fit on a single page.

This may result in two different decisions. The page may be typeset
hopelessly overfull or the footnotes are broken the same way pages are
broken.

This would result in a very interesting recursive behaviour of TgX. First
pages are split then footnotes are spilt with the same rules, then footnotes
in footnotes may be split.

This actually is not what happens. TEX restricts these kinds of events
to one recursion level. That is just pages with footnotes, not footnotes in
footnotes will be handled. This is reasonable, because in practice this never
takes place.

As there is one additional sublevel for page breaking, consequently there
are additional parameters for that kind of sublevel.

\splittopskip

\'splitmaxdepth
\ floati ngpenal ty
\insertpenalty

Now let’s turn to a real example to get all mentioned circumstances
straight.

\ new nsert\a
\ count\ a=1000
\ ski p\ a=24dd
......... Text

The \ newi nsert command will result in four new data-elements: a\ box\ a,
where the inserted text finally goes. A \ count, which is the magnification
factor for page-breaking. A \ di men giving the maximum insertion size per

page and a \ski p, which is extra space to be allocated on the page for
insertion.

When the insertion occurs, a box with the material to be inserted will
be constructed. Suppose it will turn out to be 36pt high. The pagegoal will
be diminished by 36pt and, in addition, by the value of the dimen skip.
The pagegoal consequently is smaller and the piling process for lines is
interrupted earlier, resulting in a page much shorter than pages without
insertion. TEX therefore enters the output routine with this shorter page and
the assembly process in the output routine may now build the entire page
consisting of the footnote-box and the box with the rest of the text. Here is
a simple exercise:

" textbody

\ out put ={\ vbox t o\ vsi ze{\ unvbox255
\ vski p\ ski p\ a

* skip
‘:I‘ footnotebox \boxia}}

We can easily mount some flashy accessories around this:

1~ headline

\ out put ={\ vbox{\ hbox t o\ hsi ze{\ hfil I \ t he\ count 0}
* textbody \hrule
\ vski p8dd
\ unvbox255
\ vski p\ ski p\ a

< \ hrul e wi dt h4cc
ootnoterule \ box\ s} }

T] feomotebor

Looks like a very nice page that we can use immediately for a nice book

with footnotes. Note the construction \ unvbox255. We know the textbody
and the footnote-text together with the skip will not very likely exactly
stretch to pagesize.

Therefore there are three solutions.
1. The textbody is stretched to the appropriate size, as in our example.

2. The the fixed skip is replaced by a vfill resulting in a stretch or shrink
to accommodate vsize or

3. the footnote-box is unboxed and may stretch. Definitely we can do
combinations of all three above. In the eye of a typesetter the third solution
is no reasonable approach, above all because in most cases foonotes will not
come as several paragraphs. Stretching will therefore be impossible. Even
with several paragraphs this would result in an unpleasing picture, with
the bottom paragraph stretched apart and the top textbody strictly fixed
between paragraphs. The second solution, though sounds realistic and may
preferably be used, when equal spacing between paragraphs in the main
textbody is desired. With a footnoteline a solution according to this would
probably look like this:

\ Vil |

\ hrul e 4cc
\ vski p6dd
\ box\ a

Please keep in mind that the skip will only take back the pagegoal; it does
not appear anywhere, unless you use it explicitly, as we did in our output
routine.

There is another value coming with inserts. A dimen giving the maximum
insertion per page. This is a very interesting value that relates to our story
about books of the lawyer’s faculty. With this dimen we can restrict the
amount of footnotes in a page to a certain amount. Le. a\ di men\ a=. 5\ vsi ze
will restrict footnotes to half of the pageheight. If the footnotes get longer
than this, it will be split and and the split-rest saved for the next page.

This needs no further explanation because it turns out to work properly
without any interaction.

The more interesting parameter for inserts is the \ count . This value gives
the magnification 1000 times the factor, the pagegoal will be affected. Where
can this be used? Let’s take a very nice page layout rarely seen but highly

recommendable.

" textbody
out put ={\ hbox{\ vbox t o\ vsi ze{\ unvbox255}
\ hski p12dd
* footnotes \ box\ F}}

It actually is a very interesting layout and, by the way, good style.
Unfortunately this kind of footnoting was lost due to “full featured”
typesetting computer programs. The parameters for the insert-command

now get interesting values:

\ newi nsert\F

\ count\ F=0

\ ski p\ F=0pt

\ di men\ F=\vsi ze

The magnification count now is 0, because our pagegoal should never be
affected by the footnote-insert. Actually they are not part of the pagebody
at all. The skip is Opt for the same reason, whereas the \ di men\ F is \ vsi ze,
because footnotes may easily build a complete second column as high as

\vsi ze.

One may easily get misled by this example that marginal notes may be
handled this way, but this is no solution for applications of that kind.

There is another interesting way to typeset footnotes.

\ out put ={\ vbox t o\ vsi ze{\ unvbox255
\ vfil |
\hruleto 12cc
\'vski p 6pt
\ hbox t o\ hsi ze{%
\vsplit\ato.5\ht\a
\ hfil |

ED \ box\ a}}}

In this case the parameters are as follows:

\ count \ a=500
\ di men\ a=. 5\ vsi ze
\ ski p\ a=24dd

Splitting the footnote into two boxes necessarily diminishes the pagegoal
by just half of the height of the collected footnote material.

You may immediately think of other applications using the same
mechanism, e.g. inserts for pictures on top or on bottom of text. Here
is an example to show how it works:

\ out put =\ vboxt o\ vsi ze{\ box\ P
\ vfil |
\ unvbox255} }

...\insert\P{\vbox tod4cn{}}

All these examples illustrate pretty well the power of TgX’'s footnote
algorithm. Footnotes are awkward to handle and to assemble, as a
consequence the classic way to work with footnotes is fairly different under
professional conditions.

1.) The footnote material is not directly inserted in the text. A normal
typist will — above all for ease of use — first type the main text and then
type the footnotes producing two files.

2.) footnotes come in layouts that are much more difficult than the
examples above.

To illuminate this a bit, here a layout for this weekly lawyer’s review
magazine:

This two column layout has a few very subtle features driving even the
most skilled assembler crazy. The layout demands the footnotes to appear
on the left bottom on the left column. Footnotes references appearing on
both columns are bound to find the referenced text complete on the same
page. So no footnote breaking. When the article ends the text and footnote
material have to form columns with equal length and the next article has to
fit with at least three lines for each column together with related footnotes
on the page.

This job is a perfect example, where a computer program is much faster
and even better than any human being can be.

The task is very challenging, it does not represent a page assembly with
galleys, but due to the article headlines a solution that goes beyond galley
cutting.

Let’s step the conditions through.

The layout for a first single page is as follows

\output={\if\CH
\ set box\ HL=\ vbox{\ unvbox255}

\if\CL
\ set box\ Left =\ vbox t o\ vsi ze{\ unvbox255}
\global\CR
\el se
\ set box\ Ri ght =\ vbox t o\ vsi ze{\ unvbox255%
\ vfil
\ hrul e4cc
\ vski p6dd
\ box\ F}
% assenbl e page

\vbox{\ hrul e
\ vski p3\ basel i neski p
\ Headl i ne
\ hbox t o\ ful I hsi ze{\ box\ Lef t\ hfil I \ box\ Ri ght}
\ vski p\ basel i neski p
\hrul e
\ vski p4dd
\ hbox to\ hsi ze{ Lawyers Gazette\hfil I\t he\ count0}}}

What at the end of and article?

There are two cases again:

1.) the left column end before it is filled entirely

2.) the left column has been filled and the right column fails to get filled.

In the first case we may do the following:

\ set box\ End=\ vbox{\ unvbox\ 255
\ vski p\ basel i nski p
\ hrul e 4cc
\ vski p6dd
\ unvbox\ F}

Now the footnotes and the left column are combined in the proper way
in the box \ End. The resulting box may easily be split in two equal parts.

\ hbox to\full hsi ze{%
\split\End to .5\ End
\ hfil 1 %

\ box\ End}

This is a pretty simple solution, which always works unless the footnotes
are higher than half of the complete boxheight \ End. But this may be
unavoidable in some cases. When this comes true, there are a few ways
to juggle around with the text, for instance typesetting with a different
interwordspacing thus hoping for a different amount of lines avoiding the
unwanted effect. There is no general solution to this problem. There are a
few ways to cope with something like this. a.) fine tune the baselineskip,
b.) get rid of some footnotes c.) decrease or increase the footnoteskip. But
after all this effect is something that is very hard to avoid automatically.

We still have to deal with the second case for the rest of the text when
the article finishes. The second case is, that the left column already was full,
whereas the right column has not been completely filled.

\ set box\ End=\ vbhox{\ unvbox\ Left %
\ unvbox\ 255
\ basel i nskip
\ hrul e 4cc
\ vski p6dd
\ unvbox\ F}

In this case now the probability is very high, that the new article will not
fit on the same page any longer. As a general rule the page now may be
ended here and the new article starts at a new page. But to make sure we
can check if the last column by coincidence just contains two lines and the
next article would easily fit on the same page.

\ hbox to\ful | hsi ze{\split\End to.5\End
\ hfil |
\ copy\ End}

With the copy command the box \End still is available for further
examination. With this we can measure the height of \ box\ End and use

the result to settle the appropriate questions, about whether or not the
headline of the new article still would fit.

The final algorithm turns out to be something like this:

1.) when the article starts on a new page, collect the article headline
and then collect left and right columns together with the footnotes and
assemble the page.

2.) when the article ends and the left column is only partially filled, split
the column together with it’s footnotes and place them next to each other.
Read the new article because it will fit on the same page.

3.) when the article ends with a right column, put them back together
with all footnotes, split the resulting box and check the box-height. When
the box height allows another article to be put on the same page, then
do it, else start a new page.

In order to fulfill highest quality demands, we now could even reread
articles in case they do not fit neatly into the pages. For example, if the
article ends and leaves to much white space on a page and a new article
may not fit into that white space, we may reread the complete article and
retypeset it with a different interword spacing.

The interword spacing may for example vary from .9 times the width of

1

an “i” in the used font and 1.3 times it’s width.
We may construct the following loop to check if our article will fit neatly:

\ spaceski p=. 9\wdO pl us 1. 3\ wdO mi nus . 3\ wd0
\ xpaceski p=\ spaceski p

%

\l oop

\ set box\ al | =\ vbox{\i nput articlel}

\ advance\ spaceski p by 1pt

\ xpaceski p=\ spaceski p

\ifdimall >Newarticle\repeat

In this way the complete magazine may be typeset automatically without
any interaction by stating the pertinent rules.

This example proves, that the programming of TeX is not different to any
other programming task. The most important prerequisite focus on the rules
how things should be done.

TEX is not a preprogrammed expert system, and this is its strength, because
almost any application may be programmed with TgX.

As we already mentioned, the typist will not normally type the bodytext
and footnote text in one file. Usually you get two files. To solve the problem
properly we have to write some kind of TgX program, that is able to read
records from a file.

Finally I'd like to turn my attention to one of the most important and
fastest growing application fields for TgX.

Typesetting materi al fromdat abases

Material from databases comprises almost anything. Computers have become
ubiquitous. From the early days of hammer-printing and high speed chain
printers we can produce nice looking output on laser printer today. Parallely
there has always been the area of professional typesetting. Special computers
have been invented and built in order to get typesetting done easier, faster,
and more convenient. Things tend to come together again. The normal
computer applications, as there are computer aided design, mathematics,
physics all produce output that is supposed to be read by other people.
Almost any computer output on paper represents the final result of the
work. No wonder if typesetting and other fields of computing get closer
and closer.

But not only the publication of scientific material is the matter in question,
but also all these incredible heaps of data that mankind collect day and night
in huge databases. Dealing with flight schedules; train departure hours,
telephone directories, or all 0 rhesus negative people in the world ready to
donate their kidney. All this sometimes very often needs to be presented
and packed in a neat typeset form.

The power of TgX is right here, more than in any other field. TEX can
read data in ASCII format and it can separate data in fields and records and

therefore TgX is the best-balanced racket for this kind of game.

The only important knowledge we need to typeset material from a
database is how to handle data in a format that is record oriented.

Lets just take a single entry from a tax table:

12345, 45

1 V*21239*%1 1 -93200* 89400* 44324* 52332*23323*28323*29923*29323;
1 V*12380*1 | - 93000* 87396* 43724* 23832* 55233*28323*23923* 28823;
1 V*21239*1 | - 93200* 89400* 44324* 52332* 23323* 28323* 29923* 29323,
' V¥12380*11-93000*87396*43724*23832*55233* 28323*23923*28823;

The record is dominated by a bunch of numbers representing many
different parameters for a macro, that is supposed to typeset this kind
of material. TEX does not offer more than 10 parameters for one macro.
Therefore this chapter deals above all with all possible ways how to increase
the number of parameters for a macro.

In the above example, we might consider the following macro to handle
this kind of material with TgX.

\entry 12\'s 345, 45;

1 V*21239* 1 | - 93200*89400* 44324*52332*23323*28323*29923*29323;
1 V*12380*1 | - 93000*87396*43724*23832*55233*28323*23923*28823;
I V¥21239*| | - 93200* 89400* 44324*52332*23323*28323*29923*29323;
I V*12380* | | - 93000* 87396* 43724*23832*55233*28323*23923*28823;

The definition of entry may now be:
\def\ ent ry#1; #2; #3; #4, #5,

The huge bundle of different numbers now gets divided in five packages:
#1->12\'s 345, 45
#2->1 V*21239*1 | - 93200* 89400* 44324*52332* 23323*28323*29923* 29323
#3->1 v*12380*1 | - 93000* 87396* 43724* 23832* 55233*28323*23923* 28823
#4->1 V*21239* | | - 93200* 89400* 44324*52332* 23323*28323*29923* 29323
#5->1 V*12380* | | - 93000* 87396* 43724* 23832* 55233*28323*23923* 28823

A second macro may now be defined, that is able to separate the numbers:

\def\ el mt #1* #2* #3* #4* #5* #O* #T*#8* #9* {

which apperantly wouldn’t work, because there are more than 9 elements
in a single line of numbers. The only way to cope with things like this is to
separate parameters stepwise.
\def\ el #1*#2;

This would require the following calling sequence:

\def\entry#1; #2; #3; #4, #5; {\ el #2;
-}

What happens apparently is the following. The parameter #2 from entry
reaches from the semicolon ; to the next colon resulting in the following
string:

I V¥21239* | | - 93200* 89400* 44324* 52332*23323*28323*29923* 29323

If we call \ el with this string it will be torn apart, because TgX reads the
string up to a asterisk (*) to form the first parameter, giving IV and read
from the asterisk to the colon (;) to form the second parameter. The first
macro tt\entry already has stripped the colon, therefore the colon has to be
set again, this is why \ el will be used as \ el #2; In this way we may strip

down element by element up to the point, where less than 9 elements are
left and you may introduce some macro like

\ def\ final #1*#2* #3* #4* #5* #6* #7* #8* #9

This may often be a very good solution, especially in our case, if the
structural appearance of the data material is reflected in this kind of
method. Stripping not only leads to a separation of the single elements,
but also results in different typesetting actions that are directly put into the
according macros.

But we might as well state a general macro that may strip any number
of fields from a record. This macro should have the following syntax:

\stripl4d
I V¥21239*| | - 93200* 89400* 44324*52332* 23323*28323*29923*29323;

is supposed to mean: strip the 14th field out of the record.

\def\strip#l #2*#3; {\ count 0=#1\ advance\ count0 by -1
\'i fnum count O
\'strip\countO #3;
\ fi
\ Fi el d={#2}}

64

The definition of split is a recursive algorithm, that successively strips
element for element from a string that consists of characters separated by
asterisks.

